problems.conjugate

Module: problems.conjugate

Inheritance diagram for regreg.problems.conjugate:

digraph inheritance6bd8d9bc39 { rankdir=LR; size="8.0, 12.0"; "problems.composite.composite" [URL="regreg.problems.composite.html#regreg.problems.composite.composite",fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5)",target="_top",tooltip="A generic way to specify a problem in composite form."]; "problems.conjugate.conjugate" [URL="#regreg.problems.conjugate.conjugate",fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5)",target="_top"]; "problems.composite.composite" -> "problems.conjugate.conjugate" [arrowsize=0.5,style="setlinewidth(0.5)"]; }

conjugate

class regreg.problems.conjugate.conjugate(atom, quadratic=None, negate=False, **fit_args)

Bases: regreg.problems.composite.composite

__init__(atom, quadratic=None, negate=False, **fit_args)

Initialize self. See help(type(self)) for accurate signature.

apply_offset(x)

If self.offset is not None, return x-self.offset, else return x.

get_offset()
get_quadratic()

Get the quadratic part of the composite.

latexify(var=None, idx='')
nonsmooth_objective(x, check_feasibility=False)
objective(x, check_feasibility=False)
objective_template = 'f(%(var)s)'
objective_vars = {'offset': '\\alpha', 'shape': 'p', 'var': '\\beta'}
property offset
proximal_optimum(quadratic)
proximal_step(quadratic, prox_control=None)

Compute the proximal optimization

Parameters

prox_control: [None, dict]

If not None, then a dictionary of parameters for the prox procedure

property quadratic

Quadratic part of the object, instance of regreg.identity_quadratic.identity_quadratic.

set_offset(value)
set_quadratic(quadratic)

Set the quadratic part of the composite.

smooth_objective(x, mode='both', check_feasibility=False)

Evaluate the conjugate function and/or its gradient

if mode == ‘both’, return both function value and gradient if mode == ‘grad’, return only the gradient if mode == ‘func’, return only the function value

smoothed(smoothing_quadratic)

Add quadratic smoothing term

solve(quadratic=None, return_optimum=False, **fit_args)