problems.composite¶
Module: problems.composite
¶
Inheritance diagram for regreg.problems.composite
:
Classes¶
composite
¶
-
class
regreg.problems.composite.
composite
(shape, offset=None, quadratic=None, initial=None)¶ Bases:
object
A generic way to specify a problem in composite form.
-
__init__
(shape, offset=None, quadratic=None, initial=None)¶ Initialize self. See help(type(self)) for accurate signature.
-
apply_offset
(x)¶ If self.offset is not None, return x-self.offset, else return x.
-
get_offset
()¶
-
get_quadratic
()¶ Get the quadratic part of the composite.
-
latexify
(var=None, idx='')¶
-
nonsmooth_objective
(x, check_feasibility=False)¶
-
objective
(x, check_feasibility=False)¶
-
objective_template
= 'f(%(var)s)'¶
-
objective_vars
= {'offset': '\\alpha', 'shape': 'p', 'var': '\\beta'}¶
-
property
offset
¶
-
proximal_optimum
(quadratic)¶
-
proximal_step
(quadratic, prox_control=None)¶ Compute the proximal optimization
- Parameters
prox_control: [None, dict]
If not None, then a dictionary of parameters for the prox procedure
-
property
quadratic
¶ Quadratic part of the object, instance of regreg.identity_quadratic.identity_quadratic.
-
set_offset
(value)¶
-
set_quadratic
(quadratic)¶ Set the quadratic part of the composite.
-
smooth_objective
(x, mode='both', check_feasibility=False)¶ The smooth_objective and the quadratic_objective combined.
-
smoothed
(smoothing_quadratic)¶ Add quadratic smoothing term
-
solve
(quadratic=None, return_optimum=False, **fit_args)¶
-
nonsmooth
¶
-
class
regreg.problems.composite.
nonsmooth
(shape, offset=None, quadratic=None, initial=None)¶ Bases:
regreg.problems.composite.composite
A composite subclass that explicitly returns 0 as smooth_objective.
-
__init__
(shape, offset=None, quadratic=None, initial=None)¶ Initialize self. See help(type(self)) for accurate signature.
-
apply_offset
(x)¶ If self.offset is not None, return x-self.offset, else return x.
-
get_offset
()¶
-
get_quadratic
()¶ Get the quadratic part of the composite.
-
latexify
(var=None, idx='')¶
-
nonsmooth_objective
(x, check_feasibility=False)¶
-
objective
(x, check_feasibility=False)¶
-
objective_template
= 'f(%(var)s)'¶
-
objective_vars
= {'offset': '\\alpha', 'shape': 'p', 'var': '\\beta'}¶
-
property
offset
¶
-
proximal_optimum
(quadratic)¶
-
proximal_step
(quadratic, prox_control=None)¶ Compute the proximal optimization
- Parameters
prox_control: [None, dict]
If not None, then a dictionary of parameters for the prox procedure
-
property
quadratic
¶ Quadratic part of the object, instance of regreg.identity_quadratic.identity_quadratic.
-
set_offset
(value)¶
-
set_quadratic
(quadratic)¶ Set the quadratic part of the composite.
-
smooth_objective
(x, mode='both', check_feasibility=False)¶ The zero function.
-
smoothed
(smoothing_quadratic)¶ Add quadratic smoothing term
-
solve
(quadratic=None, return_optimum=False, **fit_args)¶
-
smooth
¶
-
class
regreg.problems.composite.
smooth
(shape, offset=None, quadratic=None, initial=None)¶ Bases:
regreg.problems.composite.composite
A composite subclass that has 0 as nonsmooth_objective and the proximal is a null-op.
-
__init__
(shape, offset=None, quadratic=None, initial=None)¶ Initialize self. See help(type(self)) for accurate signature.
-
apply_offset
(x)¶ If self.offset is not None, return x-self.offset, else return x.
-
get_lipschitz
()¶
-
get_offset
()¶
-
get_quadratic
()¶ Get the quadratic part of the composite.
-
latexify
(var=None, idx='')¶
-
property
lipschitz
¶
-
nonsmooth_objective
(x, check_feasibility=False)¶
-
objective
(x, check_feasibility=False)¶
-
objective_template
= 'f(%(var)s)'¶
-
objective_vars
= {'coef': 'C', 'offset': '\\alpha', 'shape': 'p', 'var': '\\beta'}¶
-
property
offset
¶
-
proximal
(quadratic)¶
-
proximal_optimum
(quadratic)¶
-
proximal_step
(quadratic, prox_control=None)¶ Compute the proximal optimization
- Parameters
prox_control: [None, dict]
If not None, then a dictionary of parameters for the prox procedure
-
property
quadratic
¶ Quadratic part of the object, instance of regreg.identity_quadratic.identity_quadratic.
-
set_lipschitz
(value)¶
-
set_offset
(value)¶
-
set_quadratic
(quadratic)¶ Set the quadratic part of the composite.
-
smooth_objective
(x, mode='func', check_feasibility=False)¶ The smooth_objective and the quadratic_objective combined.
-
smoothed
(smoothing_quadratic)¶ Add quadratic smoothing term
-
solve
(quadratic=None, return_optimum=False, **fit_args)¶
-
smooth_conjugate
¶
-
class
regreg.problems.composite.
smooth_conjugate
(atom, smoothing_quadratic=None)¶ Bases:
regreg.problems.composite.smooth
-
__init__
(atom, smoothing_quadratic=None)¶ Given an atom, compute the conjugate of this atom plus an identity_quadratic which will be a smooth version of the conjugate of the atom.
should we have an argument “collapse” that makes a copy?
-
apply_offset
(x)¶ If self.offset is not None, return x-self.offset, else return x.
-
property
conjugate
¶
-
get_conjugate
()¶
-
get_lipschitz
()¶
-
get_offset
()¶
-
get_quadratic
()¶ Get the quadratic part of the composite.
-
latexify
(var=None, idx='')¶
-
property
lipschitz
¶
-
nonsmooth_objective
(x, check_feasibility=False)¶
-
objective
(x, check_feasibility=False)¶
-
objective_template
= 'f(%(var)s)'¶
-
objective_vars
= {'coef': 'C', 'offset': '\\alpha', 'shape': 'p', 'var': '\\beta'}¶
-
property
offset
¶
-
proximal
(proxq, prox_control=None)¶
-
proximal_optimum
(quadratic)¶
-
proximal_step
(quadratic, prox_control=None)¶ Compute the proximal optimization
- Parameters
prox_control: [None, dict]
If not None, then a dictionary of parameters for the prox procedure
-
property
quadratic
¶ Quadratic part of the object, instance of regreg.identity_quadratic.identity_quadratic.
-
set_lipschitz
(value)¶
-
set_offset
(value)¶
-
set_quadratic
(quadratic)¶ Set the quadratic part of the composite.
-
smooth_objective
(x, mode='both', check_feasibility=False)¶ Evaluate a smooth function and/or its gradient
if mode == ‘both’, return both function value and gradient if mode == ‘grad’, return only the gradient if mode == ‘func’, return only the function value
-
smoothed
(smoothing_quadratic)¶ Add quadratic smoothing term
-
solve
(quadratic=None, return_optimum=False, **fit_args)¶
-