algorithms¶
Module: algorithms
¶
Inheritance diagram for regreg.algorithms
:
Classes¶
FISTA
¶
-
class
regreg.algorithms.
FISTA
(composite)¶ Bases:
regreg.algorithms.algorithm
The FISTA generalized gradient algorithm
-
__init__
(composite)¶ Initialize self. See help(type(self)) for accurate signature.
-
alpha
= 1.1¶
-
attempt_decrease
= False¶
-
backtrack
(itercount)¶
-
debug
= False¶
-
default_tol
= 1e-05¶
-
fit
(tol=None, min_its=None, max_its=None, FISTA=True, start_step=1.0, restart=inf, coef_stop=False, return_objective_hist=True, monotonicity_restart=True, debug=None, prox_control={})¶ Use the FISTA (or ISTA) algorithm to fit the problem
- Parameters
FISTA : bool
use Nesterov weights? If False, this is just gradient descent
start_step : float
used in backtracking. This is the starting value of self.step
restart : int
Restart Nesterov weights every restart iterations. Default is never (np.inf)
coef_stop : bool
Stop based on coefficient changes instead of objective value
return_objective_hist : bool
Return the sequence of objective values?
monotonicity_restart : bool
If True, Nesterov weights are restarted every time the objective value increases
debug : bool
Resets self.debug, which controls whether convergence information is printed
prox_control : dict
A dictionary of arguments for fit(), used when the composite.proximal_step itself is a FISTA problem
- Returns
objective_hist : ndarray
A vector of objective values. Only return if return_objective_hist is True.
-
max_its
= 10000¶
-
min_its
= 5¶
-
property
output
¶ Return the ‘interesting’ part of the composite arguments. In the regression case, this is the tuple (beta, r).
-
perform_backtrack
= True¶
-
step
= None¶
-
update_working_coefs
(proposed_coefs)¶
-
algorithm
¶
-
class
regreg.algorithms.
algorithm
(composite)¶ Bases:
object
-
__init__
(composite)¶ Initialize self. See help(type(self)) for accurate signature.
-
alpha
= 1.1¶
-
attempt_decrease
= False¶
-
debug
= False¶
-
default_tol
= 1e-05¶
-
fit
()¶ Abstract method.
-
max_its
= 10000¶
-
min_its
= 5¶
-
property
output
¶ Return the ‘interesting’ part of the composite arguments. In the regression case, this is the tuple (beta, r).
-
perform_backtrack
= True¶
-
step
= None¶
-